

PROGRAMME OF THE EUROPEAN UNION COPERCICUS Europes eyes on Earth

European Commission

Accessing GFM using STAC

4th CEMS Global Flood Meeting 2025 Tobias Stachl, EODC & the GFM consortium

Data Access Points

Access through GloFAS & EFAS

GFM UI for the download of all available datasets

WMS-T service freely accessible for integration in preferred GIS environment

API service for expert users

SpatioTemporal Asset Catalog (STAC)

Metadata – What, Why, How?

- Metadata is information about data.
- Metadata makes finding data and discovering resources easier
- Metadata standards provide a common way to structure and describe data

Introducing STAC

STAC Motivation

STAC Motivation

- Users should be able to quickly and easily find the desired data
- Data should be easily accessible to users
- Data formats for metadata and data should be self-explanatory and easy to understand

Next >

STAC Motivation

• Simplicity:

STAC uses JSON for straightforward metadata management.

Web Compatibility:

By adopting JSON, STAC aligns with web standards, promoting interoperability.

Client Support:

Supported by a variety of client libraries.

JSON vs XML

Both JSON and XML can be used to receive data from a web server.

The following JSON and XML examples both define an employees object, with an array of 3 employees:

JSON Example {"employees":[{ "firstName":"John", "lastName":"Doe" }, { "firstName":"Anna", "lastName":"Smith" }, { "firstName":"Peter", "lastName":"Jones" }]}

XML Example <employees> <employee> <firstName>John</firstName> <lastName>Doe</lastName> </employee> <employee> <firstName>Anna</firstName> <lastName>Smith</lastName> </employee> <employee> <firstName>Peter</firstName> <lastName JSON is Like XML Because</pre> </employee> </employees> Both JSON and XML are "self describing" (human readable) · Both JSON and XML are hierarchical (values within values) · Both JSON and XML can be parsed and used by lots of programming languages · Both JSON and XML can be fetched with an XMLHttpRequest

JSON is Unlike XML Because

- JSON doesn't use end tag
- JSON is shorter
- JSON is quicker to read and write
 JSON can use arrays

The biggest difference is:

 XML has to be parsed with an XML parser. JSON can be parsed by a standard JavaScript function.

What is STAC?

- STAC = SpatioTemporal Asset Catalog
- STAC is a **specification** to describe geospatial information using JSON
- The focus of STAC is **search** and **discovery**
- The focus of STAC is on raster/array data
- The philosophy of STAC is to keep it simple, yet flexible and extensible
- STAC is not a definitive metadata standard like ISO or OGC
- Search geospatial data sets like GFM by **space**, **time**, **and more**.
- Data Access is not covered by STAC
 - Assets may contain links to the actual data

Who can do what with STAC?

Data Providers

- · Standardised way to expose collections of spatial temporal data
- Can be as simple as just putting JSON files on the cloud

Developers

- Can make use of a growing set of tools to work with STAC
- For interacting in different languages (Python, R, ...)
- For hosting (STAC Server, stac-fastapi, ...)
- As clients (odc-stac, pystac-client, STAC Browser, rstac, ...)
- For validating (STAC Validator, STAC Lint, ...)

Data Users

- Reduce burden of finding geospatial data
- Browse STAC catalogs on the web
- Explore satellite imagery with the QGIS STAC API Browser plugin
- Download data

Data Browsing

- STAC Browser
 - browser.stac.dataspace.copernicus.eu
 - ewds.climate.copernicus.eu/stacbrowser/
 - services.eodc.eu/browser
 - radiantearth.github.io/stac-browser

STAC API + Python

Utilize well-known **Python** libraries to **find** and **use** the data you **need**

```
- □ ×
filt = {
    "op": "gt",
    "args": [
        {"property": "ratio_after_blob_removal"}, 0.9
    ]
}
search = eodc_catalog.search(collections="GFM", filter=filt)
```

Python imports
from shapely.geometry import box
from pystac_client import Client

Define asset name to use
asset_name = "ensemble_flood_extent"

Define bounding box aoi = box(16.77, 49.91, 18.62, 51.25)

Define time range
time_range = (datetime(2024, 9, 18), datetime(2024, 9, 28))

EODC STAC API URL
api_url = "https://stac.eodc.eu/api/v1"
eodc_catalog = Client.open(api_url)

```
# Define search query using pystac_client
search = eodc_catalog.search(
    max_items=1000,
    collections="GFM",
    intersects=aoi,
    datetime=time_range
```

```
# Get STAC items
items = search.item collection()
```

print("We found", len(items), "items, that match your filter criteria.")

Prints:
We found 30 items, that match your filter criteria

 $-\Box \times$

GFM STAC Collection

Full GFM NRT + archive accessible via STAC

Fair-use data policy

Basic training materials such as Jupyter notebooks

Cloud Optimized GeoTiff

Stay tuned on EFAS and GFM channels for news and updates

Thank you!

Learn more in the interactive session!

© European Union 2023

Unless otherwise noted the reuse of this presentation is authorised under the <u>CC BY 4.0</u> license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.